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Tunnel junction between two superconductors is considered in the vicinity of the critical temperature.
Superconductive fluctuations above Tc give rise to the noise of the ac Josephson current although the current
itself is zero in average. As a result of fluctuations, current noise spectrum is peaked at the Josephson fre-
quency, which may be considered as precursor of superconductivity in the normal state. Temperature depen-
dence and shape of the Josephson current noise resonance line is calculated for various junction configurations.
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I. INTRODUCTION

In the vicinity of the critical temperature Tc transport
properties of metals are strongly affected by superconductive
fluctuations. For example, in the temperature region T−Tc
�Tc, where fluctuations are the most pronounced, Drude
conductivity acquires noticeable Aslamazov-Larkin, Maki-
Thompson, and density-of-states �DOS� corrections. Many
other kinetic and thermodynamic coefficients such as mag-
netic susceptibility, heat conductivity, Hall coefficient, and
ultrasonic attenuation are also modified by fluctuations. One
may consult recent book �Ref. 1� for exhaustive overview of
results and literature in this field.

Mostly immediately after the pioneering works on super-
conductive fluctuations,2,3 it was noticed that analog of the ac
Josephson effect may survive in the normal state above the
critical temperature.4,5 The latter is also attributed to the for-
mation of fluctuating Cooper pairs. Indeed, consider weak
transparency tunnel junction between two superconductors.
In this case Josephson current is given by IJ�t�= Ic sin��Jt�,
where �J=2 eV is the Josephson frequency and current am-
plitude Ic is proportional to the product of superconductive
order parameters �L�R�, taken from the left �L� and right �R�
to the contact area. Above the critical temperature Josephson
current vanishes �IJ����L�R�=0 since order parameter is
zero in average ��L�R���0. However, current squared �IJ

2�
���L�R�L�R�, which gives noise of the Josephson current,
is apparently not zero due to nontrivial average ��L�R��L�R��
of space and time fluctuating order parameters. As a conse-
quence, noise power spectrum SJ���, defined as the Fourier
transform of Josephson current-current correlation function,
shows distinctive peak at the Josephson frequency �J, which
is experimentally an accessible effect. The peak height Smax
=SJ��=�J� is a strong function of T−Tc, usually some
power law, which makes it possible to detect noise signal in
the immediate vicinity of the critical temperature T−Tc
�Tc. Although this observation was there for a long time,
the interest to it was recently revived. It was stressed6–8 that
measurements of the Josephson current noise may be espe-
cially fruitful in studies of the high-temperature supercon-
ductivity. Indeed, whether superconductive pairing fluctua-
tions exist in the pseudogap regime of the high-Tc materials
may be probed by the Josephson tunneling. Thus, existence
of the Josephson effect above Tc may be thought as the pre-
cursor of superconductivity.

So far fluctuations of the Josephson current above the
critical temperature were studied either for the narrow
contacts,4,7,8 taking into account only temporal fluctuations
of the order parameter, or for the mesoscopic rings.9,10 We
find, however, that in the planar geometry of the tunnel junc-
tion, where spatial variations of the superconductive order
parameter have to be accounted for, peak in the current noise
spectrum is more pronounced, especially, for the nonsym-
metric junction configurations. Motivated by the ongoing
experiments11 and possible applications in probing
pseudogap regime of high-Tc materials, we revisit problem
of the Josephson current noise above Tc and study noise in
the planar geometry of a tunnel junction. Within this work
we focus on the temperature range Gi� �T−Tc� /Tc�1,
where Gi is the Ginzburg number. In this regime fluctuations
can be considered as small and can be treated in perturbation
theory. The natural expansion parameter, which measures
strength of the superconductive fluctuations, is Gi�1.

The main results of the present work may be summarized
as follows: �i� For symmetric wide junctions, when both
electrodes are in the fluctuating regime, and contact area A is
large as compared to the square of the superconductive co-
herence length, A��o

2, Josephson current noise spectrum
SJ��� has a Lorentzian-like shape. The peak height scales in
temperature as Smax� �

Tc

T−Tc
�2 and depends quadratically on

both tunnel conductance of the junction gT and the Ginzburg
number Gi. For the lowest temperature T−Tc=GiTc, which
is allowed by the applicability of the perturbation theory,
strength of the noise is given by Smax
= �	 /64��gT

2Tc /e2���o
2 /A�. Of course, experimentally, noise is

maximal right at the transition T=Tc; however, in this case it
is very difficult to make any quantitative predictions theoreti-
cally. Thus, Smax gives an order of magnitude estimate. �ii�
For the narrow, �o

2�A, symmetric junctions we find also a
Lorentzian-like shape of SJ���, which is again quadratic in
both gT and Gi; however, temperature dependence of the
peak height is different Smax�

Tc

T−Tc
. The estimate for the noise

power at the most vicinity of the transition is Smax
= �Gi /8	��gT

2Tc /e2�. �iii� In the case of nonsymmetric junc-
tions, when one electrode is already superconducting while
another is fluctuating, noise has Lorentzian form. The tem-
perature dependence for the peak height in this case is the
same as for wide symmetric junction, which, however, ap-
pears already in the first order of the Ginzburg number and
contains large prefactor ln2��S /Tc� �where �S is the super-
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conductive gap�. �iv� Corrections to the current noise above
Tc are not exhausted by the Josephson current contribution
only. In addition, superconductive fluctuations deplete
normal-metal DOS at the Fermi energy, which changes tun-
nel conductance. The latter translates into the current noise
correction SDOS��� via fluctuation dissipation theorem
�FDT�. This effect is linear in gT and Gi, logarithmic in tem-
perature SDOS� ln�

Tc

T−Tc
�, and has an opposite sign as com-

pared to the Josephson current contribution.
The rest is organized as follows: In the next section �Sec.

II� we present in a concise form our technical method,
Keldysh nonlinear 
-model, which will be used through out
the paper in calculation of the current noise power. This for-
malism was elaborated in Refs. 12 and 13, and found to be
very useful and powerful in many applications. In the Sec.
III we calculate density-of-states and Josephson current con-
tributions to the noise spectrum above Tc. The results of the
work together with further discussions are summarized in the
Sec. IV. Number of technical points are delegated to the Ap-
pendixes A1–A3.

II. FORMALISM

Consider voltage biased tunnel junction of two supercon-
ductors above the critical temperature. Within 
-model for-
malism tunneling between L and R reservoirs of a junction is
described by the action,

iST�V� =
	gT

4e2 Tr	ei�̌V̌Q̌Le−i�̌V̌Q̌R
 , �1�

where gT is the junction tunnel conductance and Q̌L�R� are the
Green’s functions describing electron system in the elec-

trodes �hereafter �=kB=1�. Both Q̌L�R� are 44 matrices in

the four-dimensional Keldysh � Nambu space. Matrix �̌
=
0 � �z, where 
i ,�i for i=0,x ,y ,z, are the sets of Pauli
matrices acting in the Keldysh and Nambu subspaces corre-
spondingly, and symbol � stands for the direct product. Ma-

trix V̌ is the source term having standard structure in the
Keldysh space,

V̌�t� = �Vcl�t� Vq�t�
Vq�t� Vcl�t�

� � �0. �2�

Diagonal elements of V̌ are directly related to the classically
applied voltage Vcl�t�=eVt, while Vq�t� is just its quantum
component. This terminology stems from the Keldysh
contour—terms classical and quantum imply the symmetric
and antisymmetric linear combinations of the field compo-
nents residing on the forward and backward parts of the
Keldysh contour, respectively.14 Finally, trace operation
Tr	. . .
 in Eq. �1� assumes summation over the matrix struc-
ture as well as time and spatial integrations. The origin of

phase factors exp��i�̌V̌� in Eq. �1� is from gauge transfor-
mation, which moves different electrochemical potentials of
electrons in the leads from the Green’s functions to the tun-
neling term. Dynamics of the Green’s functions is governed
by the 
-model action,12,13

iS
�QL,QR� = − 
a=L,R

i�a

2�a
Tr	�̌a�̌�̌a


− 
a=L,R

	�a

4
Tr	Da��Q̌a�2 − 4�̌�tQ̌a + 4i�̌aQ̌a
 ,

�3�

where �a is the bare normal-metal density of states at the
Fermi energy, Da is the diffusion coefficient, �a is the super-

conductive coupling constant, and �̌=
x � �0. The matrix su-

perconductive order parameter �̌a�r , t� is

�̌a = ��̂a
cl �̂a

q

�̂a
q �̂a

cl
�, �̂a = � 0 �a

− �a
� 0 � . �4�

Action �3� is subject to the nonlinear constraint Q̌a
2=1. Physi-

cal quantities of interest are obtained from the action via its
functional differentiation with respect to the appropriate
quantum source. For example, tunnel current is found from
the equation,

I�t� = ie��Z�V�
�Vq�t�

�
Vq=0

, Z�V� =� D�Qa�eiS�QL,QR�, �5�

where S�QL ,QR�=S
+ST. Corresponding noise power spec-
trum is defined as

S��� = �
−�

+�

d�t − t��� �2Z�V�
�Vq�t��Vq�t��

�
Vq=0

e−i��t−t��. �6�

The procedure of extracting physical observables, out-
lined above, is rather general within Keldysh technique.
However, for the problem at hand, information encoded in
actions �1� and �3� is excessive. Indeed, S
 describes not only

dynamics of the order parameter �̌ but also contains explic-

itly electronic degrees of freedom in the form of the Q̌ ma-
trices, which complicates further analysis. Simplification is

possible realizing that dynamics of Q̌ is fast as compared to

that of �̌. The latter is governed by the time scale �Q�1 /T,
while the former by ���1 / �T−Tc�, and noticeably ����Q
when T�Tc. Under this condition, one may integrate out fast
electronic degrees of freedom from action �3� and find an
effective theory, which describes space and time fluctuations
of the superconductive order parameter only. This program
was realized for Eq. �3� in the recent work15 and we will
follow here the same route in dealing with the tunnel term
ST�V�.

Let us outline essential elements of the method. Having
interest in the effects of superconductive fluctuations, it is
reasonable to start from the normal-metal state with the

Green’s functions Q̌L�R�= Q̌N given by

Q̌N��� = �1�
R 2F�

0 − 1�
A � � �z, F� = tanh

�

2T
, �7�

which minimizes action �3� for �̌a=0. One treats then �̌a in

perturbation theory on top of Q̌N. Technically this program is
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realized in several steps. At the first stage one projects Q
matrices as

Q̌a = e−iW̌a/2 � Q̌N � eiW̌a/2, �8�

where W̌���
a �r� carries information about fast electronic de-

grees of freedom. Matrix W̌ is parametrized by the two com-
plex fields c����q� and c̄����q�—Cooper modes, which will be
integrated out eventually. It is convenient to choose

W̌a = Ř � W̌a � Ř−1, �9�

with

W̌���
a = �c���

a �+ + c���
�a �−� � 
+ + �c̄���

a �+ + c̄���
�a �−� � 
−,

�10�

where ��= ��x� i�y� /2, 
�= �
0�
z� /2, and

Ř� = Ř�
−1 = �1 F�

0 − 1
� � �0. �11�

One brings then Eq. �8� into action �3� and expands S
�Qa�
→S
�Wa ,�a� to the second order in the Cooper modes Wa

= 	c���
a , c̄���

a 
 �details of this procedure are provided in the
Appendix A1�. One finds then that to the leading order in the

coupling Tr	Q̌�̌
, Cooper modes are connected to the super-
conductive order parameter according to the relations,

c���
a �q� = C���

R �q�����
c �q�, c̄���

a �q� = C���
A �q�����

c̄ �q� ,

�12�

where we have introduced retarded �advanced� Cooperon
propagator,

C���
R�A��q� =

1

Daq2 � i�� + ���
, �13�

and the form factors,

����
c �q� = − 2���−��

cl �q� + F���−��
q �q�� ,

����
c̄ �q� = 2���−��

cl �q� − F����−��
q �q�� . �14�

Knowing relations �12� Gaussian integration over the Cooper
modes is straightforward,

� D�Wa�exp�iS
�Wa,�a�� = exp�iSeff���� . �15�

The corresponding quadratic form S
�Wa ,�a� should be
taken from Eq. �46� and one finds as a result,

Seff��� = 
a=L,R

2�a Tr	�� a
†L̂−1�� a
, �� a

T = ��a
cl,�a

q� . �16�

The propagator L̂−1�q ,�� governs superconductive order-
parameter dynamics. It has typical bosonic structure in the
Keldysh space,

L̂−1�q,�� = � 0 LA
−1

LR
−1 LK

−1� , �17�

with

LR�A�
−1 �q,�� = −

	

8Tca
�Daq2 + �GL

−1 � i�� ,

LK
−1�q,�� = B��LR

−1�q,�� − LA
−1�q,��� , �18�

and �GL=	 /8�T−Tca� and B�=coth�� /2T�.
Noticeably, effective action �16� is much simpler than the

original one �Eq. �3��. However, what is important to empha-
size, is that Seff captures correctly all the relevant low-energy
excitations of �a�r , t�. After these technical preliminaries we
turn now to the applications of the general formalism based
on the effective action Seff���.

III. CURRENT NOISE ABOVE Tc

A. Tunnel current noise

The first apparent effect of superconductive fluctuations is
modification of the normal-metal density of states. Being flat
in the normal state, ���� acquires strong energy dependence
in the vicinity of Tc with a dip around Fermi energy.16 The
latter suppresses tunnel conductance of the junction, which
influences tunnel current and as the result its noise. Super-
conductive fluctuations correction to the tunnel current was
studied in Ref. 17. Here we calculate corresponding correc-
tion to the noise. Although the result of this calculation fol-
lows immediately from the fluctuation-dissipation relation it
is still useful to see how it appears within the 
-model ap-
proach. To this end, assume nonsymmetric tunnel junction:
let us say that left electrode is in its normal state, while the
right one is in the fluctuating regime. To calculate noise

power, one uses general definition �Eq. �6�� and inserts Q̌L

= Q̌N and Q̌R� Q̌N�1+ iW̌−W̌2 /2� �Ref. 18� into the tunneling
part of action �1�. After the differentiation, which is done
with the help of the formula,

� � exp��i�̌V̌�
�Vq�t��

�
Vq=0

= � i��t − t���̌ exp��ieVt�̌� ,

�19�

where �̌=
x � �z, one finds for the noise

S��� = SS��� + SDOS��� . �20�

Here

SS��� = 2gTT
�

u�

2T
coth

u�

2T
, �21�

with u�=eV��, is just the Schottky formula for the noise in
the normal tunnel junction, while the corresponding fluctua-
tions correction is
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SDOS��� =
	gT

8
�

−�

+�

d�t − t���S+�t,t�� + S−�t,t���ei��t−t��,

�22�

where

S��t,t�� = Tr	Q̌N���Ř���W̌����q�W̌����− q���

Ř��̌Q̌N�����̌e�ieV�t−t���̌e�i��−����t−t��
 . �23�

Quantum averaging in Eq. �23�, denoted by the angular
brackets ��. . .��, should be performed with effective action
�16�, namely, ��. . .��=�D��� . . . exp�iSeff����. Recall that

fluctuation matrix W̌ is expressed through the Cooper modes
c��� and c̄���, which are functionally dependent on the order
parameter � via Eq. �12�. The notation SDOS in Eq. �22� and
its actual relation to the density-of-states suppression are mo-
tivated in Appendix A2. The linear in W̌ term in Eq. �23� is
not written explicitly since it does not contribute to the final
result. The final comment in order of Eq. �22� is that traces of
S� functions allow rather simple and convenient diagram-
matic representation shown in Fig. 1�a�.

At this point one calculates the product of W̌ matrices in
Eq. �23� and performs Gaussian functional integration over
the fluctuating order parameter using Eqs. �12� and �16�. The
resulting averages are

��c����q�c���
� �− q��� = �2i/��

LK�q,� − ��� + F��LR�q,� − ��� + F�LA�q,� − ���

�Dq2 − i�� + ����2 , �24�

��c̄����q�c̄���
� �− q��� = �2i/��

LK�q,� − ��� − F��LA�q,� − ��� − F�LR�q,� − ���

�Dq2 + i�� + ����2 . �25�

Next few steps are conceptually simple. �i� One traces Eq.
�23� over its matrix structure first and then performs time
Fourier transforms in Eq. �22� �d�t− t��ei��−���eV��t−t��

=2	���−���eV�, which removes �� integration. �ii� Ob-
serve that for the �� integration, term containing F�LA�q ,�
−��� in the average ��cc��� and term containing F�LR�q ,�
−��� in the average ��c̄c̄��� do not contribute to S� as being
integrals of purely advanced and retarded functions, respec-
tively. As a result, one takes ��cc���+ ��c̄c̄���=2i Im��cc���.
Finally one changes momentum sum into the integral q
→�d2q /4	2, assuming that the electrodes are quasi-two-
dimensional films, and introduces dimensionless variables x
=Dq2 /T, y= ��−��� /T, and z= ��+��� /4T. After these steps
Eq. �22� becomes

SDOS��� = −
16Gi

	3 gTT
�

coth
u�

2T
 �

0

+�

dx� �
−�

+�

dydz

Re
Fz+u�/2T − Fz−u�/2T

��x + ��2 + y2��x + iy − 4iz�2 . �26�

Here �=1 /Tc�GL, and we introduced Ginzburg number Gi
=1 /�D. After the remaining integrations �see Appendix A3
for details� one finds as a result,

SDOS��� = −
4Gi

	2 gTT ln� Tc

T − Tc
�  

�

coth
u�

2T

Im ��1��1

2
−

iu�

2	T
� , �27�

where ��1��z� is the first-order derivative of the digamma

function. Close look on Eq. �27� allows us to rewrite it in the
form,

SDOS��� = e
�

IDOS�u��coth
u�

2T
, �28�

where IDOS is the tunnel current correction calculated in Ref.
17, which is a priori expected result from FDT.

FIG. 1. Superconductive fluctuation contributions to the current
noise. Diagrams �a� and �b� correspond to the effects coming from
the fluctuations in the density of states for the nonsymmetric and
symmetric junctions. Diagrams �c� and �d� are the fluctuating Jo-
sephson current contribution for the symmetric and superconductor-
fluctuating metal junctions correspondingly. Ladders represent
Cooperons, Eq. �13�, wavy lines stand for the fluctuations propaga-
tor, Eq. �18�, and crossed boxes depict tunnel conductance gT.
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In complete analogy one can calculate corresponding cor-
rection to the noise for the symmetric junction when both
electrodes are in the fluctuating regime. In this case Green’s-

function matrix Q̌L has to be expanded in fluctuations W̌ also
and one faces diagram shown in Fig. 1�b�. The result of the
calculation can again be cast in the form of Eq. �28�, where
IDOS should be replaced by the appropriate second-order
fluctuation correction known from Ref. 17. Furthermore, if
one is able to calculate IDOS completely, meaning to all or-
ders of perturbation theory, then for the noise of the tunnel
current Eq. �28� can be considered as the exact result, which
is again consequence of FDT.

B. Josephson current noise

Contribution to the noise spectrum coming from the Jo-
sephson effects is very much different than that of density of
states. First of all there is no simple FDT relation similar to
Eq. �28�. Secondly, the physical mechanism, which leads to
the noise, is different. Probably the simplest way to see this
is to start from the definition of the current in Eq. �5�. As-
suming symmetric junction configuration, one expands then
each Green’s-function matrix to the linear order in fluctua-

tions Q̌L�R�→ iQ̌NW̌L�R� in the tunnel part of action �1�, which
gives for the current,

IJ�t� = −
i	gT

4e

�

�Vq�t�
Tr	ei�̌V̌Q̌NW̌Le−i�̌V̌Q̌NW̌R
 . �29�

To proceed further, we will simplify Eq. �29�, exploring
separation of the time scales between electronic and order-
parameter degrees of freedom. Indeed, one should notice that
as it follows from Eq. �18� relevant energies and momenta
for the order-parameter variations are Dq2����GL

−1 , while
the relevant fermionic energies entering the Cooperon in Eq.
�13� are �����1 /T. As a result, nonlocal relations between
Cooper modes and order parameter in Eqs. �10� and �12� can
be approximated as19

W̌tt�
a �r� � − �̂tt� � �̂tt�

a �r�, �̂tt� = ��t−t�
R

0

0 − �t�−t
A ,

� ,

�̂tt�
a �r� = �a

cl�r,
t + t�

2
��+ + �a

�cl�r,
t + t�

2
��−, �30�

where �t
R�A� are the retarded �advanced� step functions.

Physically Eq. �30� implies that Cooperon is short ranged,
having characteristic length scale �o=�D /Tc, as compared to
the long-ranged fluctuations of the order parameter, which
propagates to the distances of the order of �GL=�D�GL��o.
Thus, relations �12� are effectively local, which simplifies
further analysis considerably. Equations �30� allow us to
trace Keldysh subspace in Eq. �29� explicitly to arrive at

IJ�t� = −
	gT

e
Tr	�t2−t1

Ft1−t�t−t2
�̂tt2

L �z�̂t2t1
R eieV�t+t2��z
 ,

�31�

where we have used Eq. �19� and wrote trace in the real-
space representation �note that Tr	. . .
 here does not imply

time t integration�. Changing integration variables t1= t−�
and t3= t−�, and rescaling � ,� in the units of temperature
T�→� ,T�→�, one finds for Eq. �31� an equivalent repre-
sentation,

IJ�t� = −
i	gT

eT
� �

−�

+�

d�d�
����−�

sinh�	��

 TrN	�̂
t,t− �

T

L
�z�̂t− �

T
,t− �

T

R
eieV�2t− �

T �
 , �32�

where we used equilibrium fermionic distribution function in
the time domain Ft=−iT /sinh�	Tt�. The most significant
contribution to the above integrals comes from ����1. At
this range ratios 	� ,�
 /T change on the scale of inverse
temperature, while as we already discussed, order-parameter
variations are set by t��GL�1 /T. Thus, performing � and �
integrations one may neglect 	� ,�
 /T dependence of the or-
der parameters. As the result we find

IJ�t� =
i	gT

4eT
� d2r

A
��R

cl�r,t��L
�cl�r,t�e−i�Jt − c.c.� . �33�

Finally we are ready to calculate corresponding contribution
to the current noise. One brings two currents from Eq. �33�
into Eq. �6� and pairs fluctuating order parameters using cor-
relation function,

���a
cl�r,t��b

�cl�r�,t����� =
i

2�
�abLK�r − r�,t − t�� , �34�

which follows from Eqs. �16� and �18�. As a result, Joseph-
son current correction to the noise of wide symmetric junc-
tion is

SJ��� = −
1

4�2� 	gT

4eTc
�2


�
� d2r

A �
−�

+�

dtLK
2 �r,t�e−i��t,

�35�

where ��=���J. Corresponding diagrammatic representa-
tion of Eq. �35� is shown in Fig. 1�c�. Remaining integrations
in Eq. �35� can be done in the closed form �see Appendix A3
for details�, providing

SJ��� = 
�

	Gi2

64Tc
�gTTc

e
�2�o

2

A� Tc

T − Tc
�2

N����GL� ,

N�z� =
4

z2 ln�1 + z2/4. �36�

Analogous calculation in the case of the narrow symmetric
junction, which is obtained from Eq. �35� by replacing
LK�r , t�→LK�0, t� and removing spatial integration, gives
for the noise spectrum �see details in Appendix A3�,

SJ��� = 
�

Gi2

8	Tc
�gTTc

e
�2� Tc

T − Tc
�M����GL� ,

M�z� = �
1

+� ln�x�dx

�1 + x�2 + z2 . �37�
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In a similar fashion one may consider nonsymmetric tun-
nel junction. Assume that one of the electrodes is in the deep
superconducting state, with well defined gap in the excitation
spectrum �S, while the other is in the fluctuating regime. We

set then one of the Q̌a matrices to be superconductive

Green’s function Q̌L= Q̌S, where

Q̌S = �Q̂S
R Q̂S

K

0 Q̂S
A
�, Q̂S

K = Q̂S
R � F̂ − F̂ � Q̂S

A, �38�

F̂=F�z, and

Q̂S
R�A� = �

1
��� � i0�2 − ��S�2

� � �S

− �S
� − �

� , �39�

while expanding the other one in Cooper modes Q̌R

→ iQ̌NW̌R. The resulting expression for the current reads

IJ�t� = −
	gT

4e

�

�Vq�t�
Tr	ei�̌V̌Q̌Se−i�̌V̌Q̌NW̌R
 . �40�

Following the same steps as in the case of the symmetric
junction, carrying out differentiation with the help of Eq.
�19� and tracing consequently Keldysh and Nambu sub-
spaces and performing time integrals, one finds for the cur-
rent,

IJ�t� =
i	gT

4e
ln� ��S�

T
�� d2r

A
��R

cl�r,t�e−i�Jt − c.c.� , �41�

where we assumed that �S�Tc. Squaring Eq. �41� and aver-
aging over the order-parameter fluctuations with the help of
Eq. �34�, we get

SJ��� =
i

2�
�	gT

4e
�2

ln2� ��S�
T
�

�
� d2r

A �
−�

+�

dtLK�r,t�e−i��t.

�42�

Performing the remaining integrations, one finds noise spec-
trum of the nonsymmetric junction �see corresponding dia-
gram in Fig. 1�d��,

SJ��� = 
�

	3Gi

64Tc
�gTTc

e
�2

ln2� ��S�
T
� �o

2

A

 � Tc

T − Tc
�2

L����GL�, L�z� =
1

1 + z2 . �43�

Spectral line shapes for Eqs. �36�, �37�, and �43� are plotted
in Fig. 2.

IV. DISCUSSIONS

We have considered effects of superconductive fluctua-
tions on the current noise in tunnel junctions above the criti-
cal temperature. Several contributions were identified. The
simplest one originates from the fluctuation suppression of

the density of states. This effect gives negative contribution
to the current noise, which is only logarithmic in temperature
SDOS� ln�T−Tc�, whereas dip in the density of states at the
Fermi energy has much stronger temperature dependence
���0�� �T−Tc�−2. Somehow current and its noise get sup-
pressed, weaker than the density of states itself. Another in-
teresting point is that current noise is strongly modified only
at the characteristic voltages eV�Tc, while corresponding
feature in the density of states appears at energies ��T−Tc,
see Eq. �50�. It turns out that higher-order fluctuation effects,
similar to that shown in Fig. 1�b�, restore additional structure
of the noise signal at eV�T−Tc. Correction SDOS is linear in
Gi and in tunnel conductance gT. This is in contrast to the
Josephson current contribution to the noise. The latter is qua-
dratic in fluctuations and in tunneling, and enhances noise at
the frequencies in the vicinity of the Josephson frequency �J.
The peak at �=�J is well defined and is strongly tempera-
ture dependent, which makes it possible to detect it experi-
mentally. We have found that depending on the junction con-
figuration: symmetric or nonsymmetric and narrow or wide,
noise resonance line has different shapes in the frequency
domain Fig. 2 and different temperature dependencies.

Closing this section we should mention that in the field of
fluctuating superconductivity one usually identifies three
types of fluctuation corrections. Apart from density of states,
there are also so called Aslamazov-Larkin �AL� and Maki-
Thompson �MT� terms mentioned in Sec. I. It is quite natural
to ask how AL and MT processes modify current noise and
how they can be identified within 
-model formalism. As an
attempt to answer, one should recall that in addition to the
simple tunneling term ST�V�, considered in this work, one
may have yet another one iSA�V�= �	gA /16e2�
Tr	�ei�̌V̌Q̌Le−i�̌V̌Q̌R�2
, which was neglected. It corre-
sponds to Andreev processes, and gA is Andreev conduc-
tance. Using SA�V�, instead of ST�V�, one may follow the

same routing expanding Q̌-matrices in fluctuations W̌ to ob-
tain additional contribution to the noise. However, among all
the terms emerging in perturbative expansion, separation on
AL and MT contributions becomes ambiguous. Nevertheless,
the problem is very interesting and requires further studies.

FIG. 2. �Color online� Shape of the Josephson current noise
spectral lines in the vicinity of the resonances z=���GL.
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APPENDIX:

Fluctuations expansion

Within this section we show in details how the transfor-
mation from Eq. �3� to Eq. �16� occurs. We start fluctuations

expansion by taking Q̌� Q̌N�1+ iW̌−W̌2 /2� and bringing it

into the S
 �here and in what follows subscript a in Q̌a matrix
and all other elements will be suppressed for brevity�. For

the trace of the gradient term we find, Tr	��Q̌�2
=

−Tr	Q̌N�W̌Q̌N�W̌
=−Tr	W̌�2W̌
, where we employed an-

ticommutativity relation �Q̌N ,W̌�+=0 and nonlinear con-

straint Q̌N
2 =1. Using an explicit form of the W̌ matrix �Eq.

�10�� and tracing the product of two W̌ over the Keldysh �

Nambu space, we obtain

Tr�	��Q̌�2
 = 2 Tr	Dq2�c���
� �q�c����− q� + c̄���

� �q�c̄����− q��
 .

�A1�

The time derivative term in the S
 produces contribution

Tr	�̌�tQ̌
= i
2Tr	�Ř��̌Ř��̌W̌���W̌���
, while linear in W̌ part

traces out to zero �here we used Q̌N���= Ř��̌Ř� with �̌=
z

� �z and substituted �t→−i��.Observing that Ř��̌Ř��̌=
z
� �0, one finds

Tr	�̌�tQ̌
 =
i

2
Tr	�� + ����c���

� �q�c����− q� − c̄���
� �q�c̄����− q��
 .

�A2�

For the coupling term between Cooperons and �, to the lead-

ing order, we have Tr	�̌Q̌
=Tr	Ř��̌�−��Ř���̌W̌���
, which
translates into

Tr	�̌Q̌
 = − i Tr	���−��
cl �q� + F���−��

q �q��c���
� �− q�

+ ���−��
�cl �q� + F���−��

q� �q��c����− q�

− ���−��
cl �q� − F����−��

q �q��c̄���
� �− q�

− ���−��
�cl �q� − F����−��

�q �q��c̄����− q�
 . �A3�

Combining now Eqs. �44�–�46� all together and bringing
them back into Eq. �3�, we wind for the quadratic in Coop-
erons part of action S
�Wa ,��=S


c �c ,��+S

c̄ �c̄ ,��, where

contributions from the retarded c and advanced c̄ Cooperons
read as

iS

c �c,�� = −

	�

2
Tr	c���

� �Dq2 − i�� + ����c���

+ 2���−��
cl + F���−��

q �c���
�

+ 2���−��
�cl + F���−��

�q �c���
 , �A4a�

iS

c̄ �c̄,�� = −

	�

2
Tr	c̄���

� �Dq2 + i�� + ����c̄���

− 2���−��
cl − F����−��

q �c̄���
�

− 2���−��
�cl − F����−��

�q �c̄���
 . �A4b�

At this stage we are ready to perform integration over the
Cooperon modes. Assuming that configuration of the order-
parameter field is given, one varies Eq. �46� with respect to
c� and c̄�, and obtains stationary point equations �S


c /�c���
�

=0 and �S

c̄ /�c̄���

� =0. The latter are easily solved by Eq.
�12�. Since the value of the Gaussian integral is equal to that
taken at the saddle point, one brings Eq. �12� into Eq. �46�
and after some straightforward algebra finds Eq. �16�. Fur-
ther details can be found in Ref. 15.

Relation between SDOS and ��(�)

The purpose of this section is to demonstrate explicitly
that SDOS indeed originates from the DOS effects, which was
hidden in the technical details of Sec. III. To this end we
calculate temperature dependence of the ����� within
Keldysh technique. This illustration is useful for the sake of
comparison with the known results obtained previously from
the temperature Matsubara technique.16

Within 
-model energy dependent density of states is ex-

pressed in terms of Q̌ matrix in the following way:

���� =
�

4
Tr�Q̌NQ̌��� . �A5�

Setting Q̌= Q̌N one recovers bare normal-metal density of
states ����=�. To account for the fluctuations on top of the

metallic state, one expands Q̌ in Cooper modes W̌ to the
quadratic order and averages over � fluctuations with the
effective action from Eq. �16�;

����� = −
�

4
Tr���c����q�c���

� �− q��� + ��c̄����q�c̄���
� �− q���� .

�A6�

Observe that this is precisely the same combination of the
Cooperons, which enters SDOS in the Eq. �22�, thus they have
common origin. Furthermore, it is easy to show that
SDOS�����d�������F�+u�/2T−F�−u�/2T�. Using averages
from Eq. �24�, density-of-states correction becomes

�����
�

= Im 
q
�

−�

+� d�

2	

LK�q,�� + F�LR�q,��
�Dq2 − 2i� + i��2 . �A7�

where we set ��=�−�. Here one meets the convenience of
the Keldysh technique, which allows us to get physical quan-
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tities avoiding analytic continuation procedure. Using ex-
plicit form of fluctuations propagators from Eq. �18� and
performing frequency and momentum integrations, one finds
in the quasi-two-dimensional case,

�����
�

= −
Gi

16
� Tc

T − Tc
�2

F���GL� , �A8a�

where dimensionless function is

F�z� = Re �
0

+� dx

�1 + x��1 + 2x − 2iz�2 . �A8b�

In agreement with Ref. 16 dip at the Fermi energy is ���0�
� �T−Tc�−2, while at large energies ��GL�1 density-of-states
correction recovers its normal value according to �����
� �Tc /��2 ln���GL�.

Integrals for SDOS(�) and SJ(�)

�I� Transformation from Eq. �26� to Eq. �27� requires cal-
culation of the integral,

I = �
0

+�

dx� �
−�

+�

dydz Re
Fz+u�/2T − Fz−u�/2T

��x + ��2 + y2��x + iy − 4iz�2 .

�A9�

One performs y integration first,

I = 	�
0

+�

dx�
−�

+�

dz Re
Fz+u�/2T − Fz−u�/2T

�x + ���� + 2x − 4iz�2 . �A10�

Since ��1 and relevant z�1 one may safely approximate
��+2x−4iz��2�x−2iz�. Then expanding Fz into the series
Fz=2nz / �z2+zn

2�, with zn=	�n+1 /2�, interchanging order
of summation and integration and recalling definition of the
nth-order derivative of the digamma function ��n��z�
= �−1�n+1n !n=0

� 1 / �n+z�n+1, one finds that

�
−�

+�

dz
Fz�u�/2T

�x − 2iz�2 =
i

2	
��1��1

2
�

iu�

2	T
+

x

2	
� . �A11�

Remaining x integration can be taken with logarithmic accu-
racy, ignoring x dependence of the digamma function since
only x�1 contribute significantly, which eventually gives
−ln �. Combining all together, one finds

I =
1

4
ln�1/��Im ��1��1

2
−

iu�

2	T
� , �A12�

which in combination with Eq. �26� results in Eq. �27�.

�II� Transition from Eq. �35� to Eq. �36� is performed in
the following way: As the first step one finds Keldysh com-
ponent of the fluctuation propagator in the mixed
momentum/time representation LK�q , t�=�LK�q ,��
e−i�td� /2	, which gives

LK�q,t� = −
2iTc

2

T − Tc

e−�q�t�/�GL

�q
, �q = ��GLq�2 + 1.

�A13�

One inserts then LK�r , t�=�LK�q , t�eiqrdq2 /4	 into Eq. �35�,
integrates over r, introduces dimensionless time �= t /�GL,
and changes from q to � integration dq2=d� /�GL

2 , which
gives all together

SJ��� = 
�

	Gi2

64Tc
�gTTc

e
�2�o

2

A� Tc

T − Tc
�2

 �
−�

+�

d��
1

+� d�

�2 e−2����−iz��, �A14�

where z�=���GL. After � integration one is left with

�
1

� 4d�

��4�2 + z�
2 �

, �A15�

which defines N�z� function in Eq. �36�.
�III� Calculation of Eq. �37� is completely analogous. No-

ticing that LK�0, t�=�LK�q , t�dq2 /4	 and transforming to the
dimensionless units �= t /�GL and �= ��GLq�2+1, we have

SJ��� = 
�

Gi2�GL

4	2 �gTTc

e
�2

 �
−�

+�

d�� �
1

+� d�d��

���
e−��+������−iz��.

�A16�

After � integration one is left with

� �
1

+� d�d��

���

� + ��

�� + ���2 + z�
2 =

2

z�
�

1

+� d�

�
arccot�1 + �

z�
� ,

�A17�

which after the integration by parts reduces to 2M�z�, with
M�z� function defined by Eq. �37�.
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